
 The squashed, stretched, and warped gets perturbed

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

JHEP06(2009)019

(http://iopscience.iop.org/1126-6708/2009/06/019)

Download details:

IP Address: 80.92.225.132

The article was downloaded on 03/04/2010 at 09:15

Please note that terms and conditions apply.

The Table of Contents and more related content is available

Home Search Collections Journals About Contact us My IOPscience

http://www.iop.org/Terms_&_Conditions
http://iopscience.iop.org/1126-6708/2009/06
http://iopscience.iop.org/1126-6708/2009/06/019/related
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J
H
E
P
0
6
(
2
0
0
9
)
0
1
9

Published by IOP Publishing for SISSA

Received: April 22, 2009

Accepted: May 19, 2009

Published: June 5, 2009

The squashed, stretched, and warped gets perturbed

Igor R. Klebanov,a,b Silviu S. Pufua and Fabio D. Rochaa

aJoseph Henry Laboratories, Princeton University,

Princeton, NJ 08544, U.S.A.
bPrinceton Center for Theoretical Science,

Princeton, NJ 08544, U.S.A.

E-mail: klebanov@Princeton.EDU, spufu@Princeton.EDU,

frocha@Princeton.EDU

Abstract: We use direct Kaluza-Klein reduction to calculate the spectrum of spin-2 modes

around a warped product of AdS4 and a certain squashed and stretched 7-sphere. The

modes turn out to be polynomials in the four complex variables parameterizing the sphere,

and their complex conjugates. The background, which possesses U(1)R×SU(3) symmetry,

has been conjectured to be dual to a U(N) × U(N) N = 2 superconformal Chern-Simons

theory with a sextic superpotential. We find that the U(1)R × SU(3) quantum numbers of

spin-2 modes are in agreement with those determined in arXiv:0809.3773 through a group

theoretic method, and with the spectrum of spin-2 gauge invariant operators in the Chern-

Simons gauge theory. The mass-squared in AdS4 is found to be quadratic in these quantum

numbers and the Kaluza-Klein excitation number. Most of the spin-2 operators belong to

long multiplets, and we determine their dimensions via the AdS/CFT correspondence.

Keywords: AdS-CFT Correspondence, Chern-Simons Theories, Supergravity Models,

M-Theory

ArXiv ePrint: 0904.1009

c© SISSA 2009 doi:10.1088/1126-6708/2009/06/019

mailto:klebanov@Princeton.EDU
mailto:spufu@Princeton.EDU
mailto:frocha@Princeton.EDU
http://arxiv.org/abs/0904.1009
http://dx.doi.org/10.1088/1126-6708/2009/06/019


J
H
E
P
0
6
(
2
0
0
9
)
0
1
9

Contents

1 Introduction 1

2 The background geometry 2

3 Minimally coupled scalar equation 5

4 Spin-2 Kaluza-Klein spectrum 8

5 Discussion 9

1 Introduction

Superconformal Chern-Simons gauge theories are good candidates for describing the dy-

namics of coincident M2-branes [1]. Bagger and Lambert [2–4], and Gustavsson [5] suc-

ceeded in constructing the first N = 8 supersymmetric classical actions for Chern-Simons

gauge fields coupled to matter. Requiring manifest unitarity restricts the gauge group to

SO(4) [6, 7]; this model may be reformulated as SU(2)× SU(2) gauge theory with conven-

tional Chern-Simons terms having opposite levels k and −k [8, 9]. For k = 2 this model is

believed to describe two M2-branes on the orbifold R8/Z2 [10, 11], but for other values of

k its interpretation is less clear. Aharony, Bergman, Jafferis, and Maldacena (ABJM) [12]

proposed that a similar U(N) × U(N) Chern-Simons gauge theory with levels k and −k
arises on the world volume of N M2-branes placed at the singularity of R8/Zk, where Zk
acts by simultaneous rotation in the four planes. Therefore, the ABJM theory was con-

jectured to be dual to M-theory on AdS4 × S7/Zk. For k > 2 this orbifold preserves only

N = 6 supersymmetry, and so does the ABJM theory [12–14]. The conjectured duality

predicts that for k = 1, 2 the supersymmetry of the gauge theory must be enhanced to

N = 8. An interesting feature of the ABJM theory is the presence of certain “monopole

operators” [15–17]. Their inclusion is expected to play a crucial role both in the enhance-

ment of the supersymmetry and in describing the full spectrum of gauge invariant operators

(see [18–21] for recent discussions of the monopole operators in this context).

As in the well understood examples of AdS5/CFT4 duality [22–24], it is interesting to

study Renormalization Group (RG) flows leading to super-conformal theories with lower

supersymmetry. A well-known relevant superpotential deformation of the N = 4 SYM

theory by a term quadratic in one of the three chiral adjoint superfields leads in the IR to

an N = 1 gauge theory with U(1)R×SU(2) global symmetry and a quartic superpotential.

This gauge theory, as well as the gravity dual of the RG flow, was studied in [25]. Anal-

ogously, it is interesting to consider an N = 2 superpotential deformation of the ABJM

theory by a term quadratic in one of the four bi-fundamental superfields [13] (see also [26]).

– 1 –
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This superpotential mass term requires the use of certain monopole operators that exist

only at levels k = 1, 2 [19]. This relevant deformation leads to the IR theory with a sextic

superpotential, which possesses U(1)R × SU(3) global symmetry. Therefore, it was conjec-

tured [13, 19, 26] that this theory is dual to the U(1)R × SU(3)-invariant extremum [27]

of the N = 8 gauged supergravity potential [28]. In [29], this background was uplifted

to a warped product of AdS4 and a “squashed and stretched” 7-sphere. Moreover, in [29]

the entire holographic RG flow was constructed from AdS4 ×S7 to this warped, squashed,

and stretched background of M-theory. The relevant operator generating the RG flow

was shown in [30] to have dimension two, which agrees with the dimension of the fermion

bilinear added to the action of ABJM theory in [13].

One can further check this AdS4/CFT3 conjecture by comparing the U(1)R × SU(3)

quantum numbers and the dimensions of gauge-invariant operators in the IR N = 2 su-

perconformal Chern-Simons theory [13] with those of supergravity fluctuations around the

background of [27, 29]. In [19], the quantum numbers of all Kaluza-Klein (KK) super-

gravity excitations were computed using group theory methods introduced in [31], without

doing an explicit Kaluza-Klein reduction from 11 to 4 dimensions. However, this method

does not determine the dimensions of operators that belong to long supermultiplets. The

group theory alone gives two alternative ways of assigning U(1)R×SU(3) quantum numbers

consistent with N = 2 SUSY [31]. The first, called Scenario I in [19], yields agreement

with the gauge theory spectrum, while the second, Scenario II, is in disagreement with the

gauge theory proposal. The two scenarios give distinct mass spectra, so an explicit KK

reduction would tell us which of the two scenarios is correct.

In this paper, we perform an explicit KK analysis of the spin-2 fields in AdS4. In

the 11-dimensional geometry, the equations describing these metric perturbations reduce

to a minimally coupled scalar equation. We find analytic solutions for all the KK modes;

they turn out to be polynomials in the four complex variables parameterizing the squashed

and stretched R8, and their complex conjugates. Quite remarkably, the squared masses in

AdS4 for all these modes are quadratic functions of the U(1)R × SU(3) quantum numbers,

as well as of the KK excitation number. These results hold not only for the BPS states, but

also for the non-BPS ones. The spectrum that we find is indeed consistent with Scenario

I, and therefore with the duality proposed in [13, 19].

The rest of the paper is organized as follows. In section 2 we review the 11-dimensional

background found in [29] to be the uplifting of Warner’s U(1)R × SU(3) extremum of

gauged supergravity. In section 3 we solve the minimally coupled scalar equation in this

background and find its spectrum. In section 4 we describe the connection between the

minimally coupled scalar equation and the AdS4 graviton, and we match the quantum

numbers of the operators that we find with those of operators in the Chern-Simons theory

with sextic superpotential. We end with a discussion of our results in section 5.

2 The background geometry

We start by reviewing the 11-dimensional uplift of the supergravity background with global

U(1)R × SU(3) symmetry that was found in [27] as a non-trivial extremum of the N = 8

– 2 –
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gauged supergravity potential. The 11-dimensional geometry is a warped product of AdS4

and an internal manifold, which in this case is a squashed and stretched S7 [29]. This

background has a non-zero four-form flux F(4) = dA(3) in the S7 directions. As a result,

parity is broken, which can also be seen from the fact that in the corresponding four-

dimensional gauged supergravity background a scalar and a pseudo-scalar acquire VEVs.

We refer the reader to [29] for a derivation of the formulae in this section.

In the conventions of [32], the bosonic field equations are

RAB +RgAB =
1

3
F

(4)
AMNPF

(4)MNP
B , d ∗ F(4) = F(4) ∧ F(4) , (2.1)

where the Hodge dual is defined with the convention ǫ0···10 = 1. We focus first on the geom-

etry of the S7 part. Following [29], we consider a space diffeomorphic to R8 parameterized

by xI , with I running from 1 to 8, in which the S7 will be embedded in the standard way.

In this 8-dimensional space, we introduce the Kähler form

J12 = J34 = J56 = J78 = 1 , (2.2)

and the diagonal matrix

Q = diag
{

ρ−2, ρ−2, ρ−2, ρ−2, ρ−2, ρ−2, ρ6, ρ6
}

. (2.3)

The metric on the deformed R8 is taken to be

ds28(ρ, χ) = gIJdx
IdxJ = dxIQ−1

IJ dx
J +

sinhχ2

ξ2
(xIJIJdx

J)2 , (2.4)

where ξ2 ≡ xIQIJx
J . Equation (2.4) describes a squashed and stretched R8; the amounts

of squashing and stretching are parameterized by ρ and χ, respectively. For (ρ, χ) = (1, 0)

we obtain the flat metric on R8, which has SO(8) symmetry. For other values of ρ and χ,

the SO(8) symmetry group is broken down generically to SU(3)×U(1)2. This can be seen

explicitly through introducing the complex coordinates

z1 = x1 + ix2 , z2 = x3 + ix4 , z3 = x5 + ix6 , w = x7 − ix8 . (2.5)

It is straightforward to check that unitary rotations of the zi, as well as the multiplication

of w by a phase, are isometries of the metric (2.4). This gives us the U(3) × U(1) =

SU(3) × U(1)2 isometry group.

We now introduce angular coordinates yα ≡ (µ, θ, α1, α2, α3, φ, ψ) parameterizing the

S7 |z1|2 + |z2|2 + |z3|2 + |w|2 = 1 inside R8:

z1 = cosµ sin θ cos
(α1

2

)

e
i
2
(α2+α3)ei(φ+ψ)

z2 = cosµ sin θ sin
(α1

2

)

e−
i
2
(α2−α3)ei(φ+ψ)

z3 = cosµ cos θei(φ+ψ) (2.6)

w = sinµ e−iψ .

– 3 –
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In order for the yα to cover the S7 only once, their ranges can be taken as follows:

0 ≤ µ, θ ≤ π/2 0 ≤ α1 ≤ π

0 ≤ α3, φ, ψ ≤ 2π −2π ≤ α2 ≤ 2π .
(2.7)

Through the embedding (2.6), the 7-sphere inherits the stretching and squashing of the

ambient space R8, so its metric is just the pullback of (2.4):

ds27(ρ, χ) = gαβdy
αdyb , gαβ =

∂xI

∂yα
∂xJ

∂yβ
gIJ . (2.8)

The 11-dimensional metric that solves (2.1) (with an appropriately chosen F(4) given

below) is then given by1

ds211 = ∆−1ds24 + 33/2L2∆
1

2 ds27(ρ, χ) , ∆ ≡ (ξ coshχ)−
4

3 , (2.9)

where ds24 is the AdS4 metric

ds24 = e2r/L
[

−(dx0)2 + (dx1)2 + (dx2)2
]

+ dr2 , (2.10)

and ρ and χ are set to

ρ = 3
1

8 , χ =
1

2
arccosh 2 . (2.11)

Note that the warp factor ∆ depends only on the angular coordinate µ and that it does

not break any of the SU(3) × U(1)2 isometries of (2.8).

To describe the F(4) that solves (2.1) together with (2.9), we start by constructing a

3-form C(3) on the S7 fiber. In terms of the complex coordinates on R8 defined in (2.6),

C(3) can be written as

C(3) =
311/4L3

4 (ziz̄i + 3ww̄)

[

z[1dz2 ∧ dz3] ∧ dw̄ − w̄dz1 ∧ dz2 ∧ dz3
]

. (2.12)

One can then construct the A(3) in the 11-dimensional geometry by taking2

A(3) =
33/4

4
e3r/Ldx0 ∧ dx1 ∧ dx2 + C(3) + C∗

(3) . (2.13)

The 4-form F(4) appearing in (2.1) is then F(4) = dA(3). The internal part of F(4) can be

written as

dC(3) + dC∗
(3) =

311/4L3

2(1 + 2ww̄)2

[

− w̄z[1dz2 ∧ dz3] ∧ dw ∧ dw̄ − w̄2dz1 ∧ dz2 ∧ dz3 ∧ dw

+(1 + ww̄)dz1 ∧ dz2 ∧ dz3 ∧ dw̄
]

+ c.c. (2.14)

1In (2.8), L is defined as 3−3/4 times the corresponding quantity appearing in [29]. We prefer this

normalization because the radius of AdS4 is now given by L and not 33/4L.
2This doesn’t fully agree with [29], but we checked that the Maxwell and Einstein equations are satisfied.

– 4 –



J
H
E
P
0
6
(
2
0
0
9
)
0
1
9

Note that F(4) breaks the SU(3)×U(1)2 symmetry group of (2.9) to SU(3)×U(1). In

the complex coordinates (2.6) this symmetry group consists of SU(3) rotations of the zi,

as well as transformations of the type

zi → zieiδ , w → we3iδ (2.15)

with arbitrary δ. In terms of the yα coordinates, (2.15) corresponds to shift symmetries

of φ and ψ that preserve the quantity 3φ + 4ψ. This U(1) should be identified with the

R-symmetry of the dual field theory. In order to agree with the convention used in [19],

we define the R-charge to be given by the Killing vector

R = −i
(

4

3
∂φ − ∂ψ

)

=
1

3

(

zi∂zi − z̄i∂z̄i

)

+ w∂w − w̄∂w̄ . (2.16)

Thus, the zi coordinates have R-charge 1/3 [33], while the w coordinate has R-charge 1.

3 Minimally coupled scalar equation

The action for a minimally coupled scalar in the background described in the previous

section is given by

S =

∫

d11x
√−g

[

−1

2
(∂φ)2

]

, (3.1)

The equation of motion following from this action is

�φ = 0 , (3.2)

where � denotes the 11-dimensional laplacian. Making the separation of variables ansatz

φ = Φ(xi, r)Y (yα) , (3.3)

we can write (3.2) as

Y (yα)�4Φ(xi, r) + Φ(xi, r)LY (yα) = 0 , (3.4)

in which �4 denotes the AdS4 laplacian and L is a differential operator acting on the

squashed and stretched S7 given by

L ≡ ∆−1

√−g11
∂α

(√−g11gαβ11 ∂β

)

=
∆−3/4

√
g7

∂α

(

∆−3/4√g7gαβ7 ∂β

)

. (3.5)

Here, g7
αβ and g11

µν are the metrics (2.8) and (2.9), respectively.

If we now choose Y (yα) to be an eigenfunction of this differential operator, namely

LY (yα) = −m2Y (yα) , (3.6)

then (3.4) becomes the equation of motion of a massive scalar field in AdS4,

�4Φ(r, xi) −m2Φ(r, xi) = 0 . (3.7)

– 5 –
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The 11-dimensional minimally coupled scalar thus gives a tower of 4-dimensional Kaluza-

Klein modes that are all massive AdS4 scalars with masses determined by the eigenvalues

of L.

To compute these eigenvalues we should exploit the symmetries of the metric. Let us

first consider the SU(3) piece of the isometry group. In the (zi, w) coordinates defined

in (2.6), the Killing vectors associated to the SU(3) symmetry are simply given by

ξ = T klz
l∂zk − (T kl)

∗z̄l∂z̄k
, k, l = 1, 2, 3 , (3.8)

where T kl are arbitrary traceless hermitian matrices. A convenient set of linearly inde-

pendent Killing vectors is obtained by taking T = λa/2, where λa with a = 1, . . . , 8 are

the Gell-Mann matrices. In an irreducible representation of SU(3) labeled by the Dynkin

labels [p, q], the quadratic Casimir

C2 ≡
8
∑

a=1

ξaξa (3.9)

has eigenvalues

C2(p, q) =
1

3
q2 +

1

3
p2 +

1

3
pq + p+ q . (3.10)

In the holomorphic coordinates (zi, w) its eigenfunctions are, up to normalization, just

linear combinations of products between p factors of zi and q factors of z̄i, namely

Ypq(z, z̄) = a
j1j2...jq
i1i2...ip

(

p
∏

k=1

zik

)(

q
∏

l=1

z̄jl

)

. (3.11)

Here, a
j1j2...jq
i1i2...ip

is a (p, q)-tensor independent of the (zi, w) coordinates that is symmetric in

its lower indices, symmetric in its upper indices, and satisfies the tracelessness condition

a
kj2...jq
ki2...ip

= 0. Since C2 doesn’t act on µ or on ψ, we can multiply the expression (3.11) by

any function of w and w̄.

We will look for eigenmodes of the form3

Y (yα) = Ypq(z, z̄)w
nrH(u) , u ≡ 1 − ww̄ = cos2 µ . (3.12)

The R-charge of this wave-function (3.12) can be read off from the powers of zi, z̄i, and w

that appear in this formula if one recalls that (2.16) implies that the zi coordinates carry

R-charge 1/3, the z̄i coordinates carry R-charge −1/3, and that the w coordinate carries

R-charge 1. Therefore,

R =
1

3
(p− q) + nr . (3.13)

Using the definition of the quadratic Casimir (3.9) together with the formulae for ξa

given in (3.8), one can show that the eigenvalue problem (3.6) reduces to

(1 − u)uH ′′ + (c− (a− + a+ + 1)u)H ′ − a−a+H = 0 , (3.14)

3One might think that this ansatz is not general enough since (3.12) can be multiplied by einφφ with

some integer nφ. However, one can check that if nφ 6= 0 this extra factor either makes the wavefunction

ill-defined at θ = π/2 or turns it into a wavefunction of the form (3.12) that can be obtained from the

[p + nφ, q − nφ] representation of SU(3).

– 6 –
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where primes denote derivatives with respect to u, and

a± =
1

6

[

9 + 3p+ 3q + 3nr ±
(

81 + 18m2L2 + 7(p2 + q2) + 10pq

−6(p− q)nr + 24(p + q) − 9n2
r

)
1

2
]

(3.15)

c = 3 + p+ q .

This equation is solved by hypergeometric functions. The boundary conditions that enforce

regularity of Y (yα) are that u
p+q
2 H(u) is regular at u = 0 and that (1−u)nr

2 H(u) is regular

at u = 1. The solution for which u
p+q
2 H(u) is regular at u = 0 is

H(u) = 2F1 (a−, a+; c;u) . (3.16)

In order to impose the boundary conditions at u = 1, we start by noting that when a− = −j,
with j a non-negative integer, the hypergeometric function 2F1 (a−, a+; c;u) reduces to a

polynomial in u of order j. If nr ≥ 0, (1 − u)
nr
2 H(u) is therefore regular at u = 1. For

nr < 0, if we set a− = nr − j, with j still a non-negative integer, then H(u) has a zero of

order nr at u = 1 and (1− u)
nr
2 H(u) is once again well-behaved. It is straightforward but

tedious to check that if a− does not have one of these forms, equation (3.14) doesn’t have

solutions that lead to well-behaved (1 − u)
nr
2 H(u). The KK spectrum of the minimally

coupled scalar is then obtained by setting a− as given by (3.15) equal to −j if nr ≥ 0 and

to nr − j if nr < 0, and solving for m2. The result can be written compactly in terms of j,

nr, p, and q as

m2 =
1

L2

[

2j2 + 2j|nr| + n2
r + 2j(p + q + 3) +

1

3
nr (p− q)

+|nr|(3 + p+ q) +
1

9

(

p2 + q2 + 4pq + 15p + 15q
)

]

. (3.17)

It is interesting that m2 is given by such a simple quadratic formula.

Plugging (3.16) into (3.12) and using the appropriate formulae for a± and c we see that

Y (yα) = a
j1j2...jq
i1i2...ip

(

p
∏

k=1

zik

)(

q
∏

l=1

z̄jl

)

wnr

×
{

2F1(−j, 3 + p+ q + j + nr; 3 + p+ q; 1 − ww̄) if nr ≥ 0

2F1(−j + nr, 3 + p+ q + j; 3 + p+ q; 1 − ww̄) if nr < 0 .
(3.18)

As we remarked, the hypergeometric functions appearing in (3.18) are in fact polynomials

in their last argument. For example,

j = 0, nr ≥ 0 : Y (yα) ∼ Ypq(z, z̄)w
nr

j = 1, nr ≥ 0 : Y (yα) ∼ Ypq(z, z̄)w
nr

−(nr + 1) + (4 + nr + p+ q)ww̄

3 + p+ q
. (3.19)

To obtain the eigenfunctions when nr < 0, one just needs to interchange w and w̄ in (3.19).

– 7 –
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4 Spin-2 Kaluza-Klein spectrum

The spectrum of the minimally coupled scalar obtained in the previous section is in fact

the same as that of a graviton polarized in the AdS4 directions. Such gravitons correspond

to fluctuations of the metric (2.9),

gmn → gmn + hmn (4.1)

with m and n referring to the AdS4 coordinates ym = (x0, x1, x2, r). We can choose a

gauge where hrm = 0, the only remaining non-zero metric fluctuations being hij , with i

and j running from 0 to 2. In addition to this, we require

hii = 0 , ∂ihij = 0 . (4.2)

The conditions (4.2) can be thought of as projecting out the spin-0 and spin-1 components of

the graviton multiplet. As in the unwarped AdS metrics, the linearized Einstein equations

reduce to the minimally coupled scalar equation for φ = hij [34, 35]. It immediately follows

that the KK spectrum of the spin-2 component of the graviton multiplet is the same as

that of a massless scalar.

The dimensions of the CFT operators dual to the KK modes (3.18) can be calculated

from the standard AdS/CFT relation

∆(∆ − 3) = m2L2 , (4.3)

where m2 is given in (3.17). Note that (4.3) applies both to the scalar and the spin-2 modes

(see, for example, [36]). The R-charge of these operators is given by (3.13). Recall that p

and q appearing in (3.13)–(3.18) are the Dynkin labels of SU(3) irreducible representations

[p, q]; nr is an arbitrary integer, which according to (3.13), is in one-to-one correspondence

with the R-charge for fixed p and q; and j is a non-negative integer, the Kaluza-Klein

excitation number.

We would like to compare the spectrum of the minimally coupled scalar to the two sce-

narios in [19]. The only Osp(2|4) supermultiplets with spin-2 components are the massless,

short, and long graviton multiplets, denoted in [19] by MGRAV, SGRAV, and LGRAV,

respectively. For both MGRAV and SGRAV, the supersymmetry shortening conditions

require ∆ = |R| + 3, giving m2 = m2
BPS with

m2
BPS ≡ 1

L2
|R| (|R| + 3) . (4.4)

The dimensions of the spin-2 operators in LGRAV satisfy ∆ > ∆BPS, and consequently

m2 > m2
BPS.

Let’s denote multiplets belonging to the [p, q] representation of SU(3) which have R-

charge R by [p, q]R. In both scenarios in [19] there is a unique massless graviton multiplet

whose quantum numbers are [0, 0]0. In Scenario I, all the short graviton multiplets are

[0, 0]r and [0, 0]−r, with r a positive integer. In Scenario II, there is an infinite number of

short graviton multiplets of the form [0, 0]0, as well as short graviton multiplets with non-

zero p and q such as [1, 0]−2/3, [0, 1]2/3, [2, 0]4/3, [0, 2]−4/3, etc. Plugging (3.13) into (4.4)

– 8 –
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and comparing to (3.17), one can check that m2 ≥ m2
BPS with equality only when p =

q = j = 0. The equality case corresponds exactly to operators belonging to [0, 0]R with

all integer R. This is in agreement with Scenario I and in disagreement with Scenario II.

The structure of the long graviton multiplets predicted by the R-charge formula (3.13) is

also in agreement with Scenario I and in disagreement with Scenario II; this can be seen

by examining tables 17 through 23 in [19].

We can go further and identify the operators dual to the modes described by (3.18).

Let us discuss these operators schematically, as in [19], in terms of bifundamental matter

superfields ZA with A ranging from 1 to 4, as well as gauge superfields. We will not be care-

ful with gauge indices, and assume that appropriate insertions of monopole operators make

the resulting expressions gauge invariant. The gauge theory conjectured to be dual to the

U(1)R × SU(3) N = 2 supergravity background examined in this paper is a deformation of

ABJM theory by a superpotential term quadratic in Z4. The gauge theory also has U(1)R×
SU(3) symmetry, where the SU(3) symmetry corresponds to global rotations of Z1, Z2, and

Z3 into one another. Under the U(1)R symmetry, the fields ZA have R-charges given by

R(Z1) = R(Z2) = R(Z3) =
1

3
, R(Z4) = 1 . (4.5)

In [19], it was proposed that the gauge theory operators dual to the short graviton multi-

plets [0, 0]r with n ≥ 0 are of the schematic form

T (n)
αβ ∼ T (0)

αβ (Z4)r , (4.6)

where T (0)
αβ is the stress-energy superfield

T (0)
αβ = D̄(αZ̄ADβ)ZA + iZ̄A

↔
∂ αβZA . (4.7)

The operator T (0)
αβ is dual to the massless graviton multiplet [0, 0]0 and is conserved. The

form (4.6) is only schematic because in order to properly define gauge invariant operators

of this form one needs to include Dirac monopole operators: see [19]. As mentioned above,

short multiplets have p = q = j = 0. From (3.13), (3.18), and (3.19) we can see that the

spin-2 components of these multiplets have

Y (yα) = wr , (4.8)

for R-charge r ≥ 0.

It is then natural to identify (up to normalization) the ZA fields, where A = 1, 2, 3,

with the holomorphic coordinates zi, and Z4 with w. From (3.18), one can then read off

the operators corresponding to each of the KK modes. In table 1 we list a few of these

modes, and we give a schematic form of the dual gauge theory operators.

5 Discussion

In this paper we performed a KK reduction for spin-2 excitations around a warped M-theory

background which was conjectured in [13, 19] to be dual to an N = 2 deformation of ABJM

– 9 –
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[p, q]R j nr ∆ m2L2 Operator

* [0, 0]0 0 0 3 0 T (0)
αβ

* [0, 0]±1 0 ±1 4 4 T (0)
αβ Z4, T (0)

αβ Z̄4

[0, 1]− 1

3

, [1, 0] 1

3

0 0 1
6

(

9 +
√

145
)

16
9 T (0)

αβ Z̄A, T (0)
αβ ZA

* [0, 0]±2 0 ±2 5 10 T (0)
αβ (Z4)2, T (0)

αβ (Z̄4)
2

[0, 0]0 1 0 1
2

(

3 +
√

41
)

8 T (0)
αβ

(

1 − 4a2Z4Z̄4

)

[0, 1]− 4

3

, [1, 0] 4

3

0 −1, 1 1
6

(

9 +
√

337
)

64
9 T (0)

αβ Z̄AZ̄4, T (0)
αβ ZAZ4

[0, 1] 2

3

, [1, 0]− 2

3

0 −1, 1 1
6

(

9 +
√

313
)

58
9 T (0)

αβ Z̄AZ4, T (0)
αβ ZAZ̄4

[0, 2]− 2

3

, [2, 0] 2

3

0 0 1
6

(

9 +
√

217
)

34
9 T (0)

αβ Z̄(AZ̄B), T (0)
αβ Z(AZB)

[1, 1]0 0 0 4 4 T (0)
αβ

(

ZAZ̄B − 1
3δ
A
BZCZ̄C

)

[0, 0]±1 1 ±1 1
2(3 +

√
65) 14 T (0)

αβ

(

2 − 5a2Z4Z̄4

)

Z4, c.c.

* [0, 0]±3 0 ±3 6 18 T (0)
αβ

(

Z4
)3
,T (0)
αβ

(

Z̄4

)3

[1, 0]− 5

3

, [0, 1] 5

3

0 −2,+2 1
6(9 +

√
553) 118

9 T (0)
αβ ZA

(

Z̄4

)2
,T (0)
αβ Z̄A

(

Z4
)2

[1, 0] 1

3

, [0, 1]− 1

3

1 0 1
6(9 +

√
505) 106

9 T (0)
αβ ZA

(

1 − 5a2Z̄4Z4
)

, c.c.

[1, 0] 7

3

, [0, 1]− 7

3

0 2,−2 1
6(9 +

√
601) 130

9 T (0)
αβ ZA

(

Z4
)2
,T (0)
αβ Z̄A

(

Z̄4

)2

[1, 1]±1 0 ±1 5 10 T (0)
αβ

(

ZAZ̄B − 1
3δ
A
BZCZ̄C

)

Z4, c.c.

[2, 0]− 1

3

, [0, 2] 1

3

0 −1, 1 1
6(9 +

√
409) 82

9 T (0)
αβ Z(AZB)Z̄4,T (0)

αβ Z̄(AZ̄B)Z4

[2, 0] 5

3

, [0, 2]− 5

3

0 1,−1 1
6(9 +

√
457) 94

9 T (0)
αβ Z(AZB)Z4,T (0)

αβ Z̄(AZ̄B)Z̄4

[2, 1] 1

3

, [1, 2]− 1

3

0 0 1
6(9 +

√
313) 58

9 T (0)
αβ

(

Z(AZB)Z̄C − 1
3δ

(A
C ZB)ZDZ̄D

)

, c.c.

[3, 0]1, [0, 3]−1 0 0 1
2(3 +

√
33) 6 T (0)

αβ Z(AZBZC),T (0)
αβ Z̄(AZ̄BZ̄C)

Table 1. The first few spin-2 components of the graviton multiplets. For each multiplet, we

give the Dynkin labels [p, q], the R-charge R, the values of j and nr, the dimension ∆ of the spin-2

component of the multiplet, the mass m2L2 of the dual AdS4 field, and a schematic form of the dual

CFT operator. The dimension ∆ can be computed from m2L2 as the larger root of equation (4.3).

The operators marked with “∗” are BPS.

theory with U(1)R×SU(3) symmetry. This background is a warped product between AdS4

and a squashed and stretched S7 [29]. The spectrum of spin-2 excitations was found by solv-

ing the equations of motion for a minimally coupled scalar in this background. Our main

results are equations (3.17) and (3.18) that give the AdS4 masses of the KK modes and their

wavefunctions on the internal manifold. It is remarkable that the squared masses of these

modes are given by a simple quadratic function of all the quantum numbers, namely the

Dynkin labels [p, q] of SU(3) representations, a U(1) excitation number nr related to the R-

charge through (3.13), and the KK excitation number j. In [19], group theory methods were

used to constrain the spectrum of supergravity fluctuations of the same background. The

spectrum that we found agrees with Scenario I and rules out Scenario II, in agreement with

the proposal of [19]. Using the AdS/CFT duality, we computed the dimensions of the dual

operators in the boundary CFT. We proposed a schematic form of these operators in table 1.

An intriguing feature of the spectrum we obtained is the presence of modes with

– 10 –
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integer dimension ∆ that do not belong to BPS multiplets. For instance, the modes with

quantum numbers [1, 1]r and j = 0, with r an integer, have R-charge R = r and dimension

∆ = |R| + 4, which is strictly greater than the corresponding BPS value |R| + 3. The first

three modes in this tower, [1, 1]0 and [1, 1]±1, appear in table 1. The dual gauge theory

operators corresponding to the spin-2 components of [1, 1]r are of the schematic form

Tαβ

(

ZAZ̄B − 1

3
δABZ

CZ̄C

)

(

Z4
)r

for r ≥ 0

Tαβ

(

ZAZ̄B − 1

3
δABZ

CZ̄C

)

(

Z̄4
)−r

for r < 0 ,

(5.1)

where ZA are the spin-0 components of the ZA superfields we used in the previous section.

In the rest of this discussion let’s focus on the r ≥ 0 case, the r < 0 case being entirely

analogous. We recognize that the operators in (5.1) are products of two BPS protected

operators: the spin-2 component of the short graviton multiplets [0, 0]r (see (4.6))

T
(r)
αβ = Tαβ(Z

4)r (5.2)

with dimension ∆ = |R| + 3, and a scalar operator

ZAZ̄B − 1

3
δABZ

CZ̄C (5.3)

with dimension ∆ = 1 belonging to the massless vector multiplet. (Recall from [19] that

the massless vector multiplet is dual to a conserved vector superfield J (0)B
A whose spin-1

component is

J
(0)A
µB = Z̄B

↔
∂ µZ

A − 1

3
δABZ̄C

↔
∂ µZ

C . (5.4)

Being a conserved current, J
(0)A
µB has protected dimension ∆ = 2.) The dimensions ∆ =

|R| + 4 of the operators (5.1) can therefore be correctly computed by naively adding the

dimensions of the BPS operators (5.2) and (5.3). We do not know of any mechanisms that

protect the dimensions of the operators (5.1). It is worth noting that the [1, 1]r modes

are not the only ones producing integers dimensions: there are infinitely many other such

towers of long multiplets. For instance, the modes [3, 6]r and [6, 3]−r with integer r ≥ −1

and j = 0 have ∆ = |R| + 8; as another example, the modes [4, 10]r and [10, 4]r , with

integer r ≥ −2 and j = 0 have dimensions ∆ = |R|+11. In addition, there are many other

long multiplets with integer dimensions that do not belong to any such towers.

The existence of many towers of long multiplets with rational dimensions in the KK

spectrum has been noted for other M-theory and string theory backgrounds. This feature

was pointed out for AdS5 × T 1,1 in [37, 38], for both AdS4 × Q1,1,1 and AdS4 ×M1,1,1

in [39], for AdS4 × V(5,2) in [40], and for AdS4 × N0,1,0 in [41]. For AdS4 × Q1,1,1 and

AdS4 ×M1,1,1 the operators dual to the long rational gravitons are products of the stress

tensor, a conserved current, and a chiral operator [39, 42]. More generally, it was shown

in [43] that the KK spectrum of all M-theory backgrounds of the form AdS4 ×X7, where

X7 is a homogeneous space with Killing spinors, includes long multiplets with rational

dimensions that appear as “shadows” of BPS-protected multiplets. In the terminology

– 11 –
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of [43], long graviton multiplets of a form analogous to (5.1) are shadows of short vector

multiplets. The reason behind the shadowing mechanism is that the same harmonics on

X7 appear in the KK expansion of two or more fields belonging to different multiplets. The

AdS4 masses of these fields are related algebraically because they can each be expressed in

terms of the eigenvalues of the same X7 harmonics. There is no known interpretation of the

shadowing mechanism in dual gauge theory language; nor is it known whether it survives

the departure from the strong coupling limit, corresponding to including the string sigma

model corrections.

It would be interesting to extend the analysis done in this paper to KK excitations of

different AdS4 spin. This would permit further checks of Scenario I of [19] and would per-

haps elucidate the form of the gauge theory operators dual to these lower-spin excitations.

Our analysis was made easier by the fact that there was only one spin-2 excitation (given

by certain perturbations of the metric with both indices in the AdS4 directions) that de-

coupled from all other perturbations. For lower spins, there are several distinct excitations

corresponding to each spin, and one faces the additional challenge of finding the form of

the perturbations that decouple. This is made harder by the relatively small amount of

symmetry in this background, and by the fairly involved expressions for the background

metric and 3-form.
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[41] M. Billó, D. Fabbri, P. Fré, P. Merlatti and A. Zaffaroni, Rings of short N = 3 superfields in

three dimensions and M-theory on AdS4 ×N0,1,0, Class. Quant. Grav. 18 (2001) 1269

[hep-th/0005219] [SPIRES].

[42] D. Fabbri, Three dimensional conformal field theories from Sasakian seven-manifolds,

hep-th/0002255 [SPIRES].
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